ℓp-Norm Multikernel Learning Approach for Stock Market Price Forecasting

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ℓ p-Norm Multikernel Learning Approach for Stock Market Price Forecasting

Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ(1)-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ(p)-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optim...

متن کامل

Stock Price Forecasting

The especial importance of capital market in countries is undeniable in economic development via effective capital conduct and optimum resources allocation. Investment in capital market requires decision making in new stock exchanges, and   accessing information in the case of future status of capital market. Undoubtedly, nowadays most part of capital is exchanged via stock exchange all around ...

متن کامل

Stock Market Forecasting Using Machine Learning Algorithms

Prediction of stock market is a long-time attractive topic to researchers from different fields. In particular, numerous studies have been conducted to predict the movement of stock market using machine learning algorithms such as support vector machine (SVM) and reinforcement learning. In this project, we propose a new prediction algorithm that exploits the temporal correlation among global st...

متن کامل

A multiple-kernel support vector regression approach for stock market price forecasting

Support vector regression has been applied to stock market forecasting problems. However, it is usually needed to tune manually the hyperparameters of the kernel functions. Multiple-kernel learning was developed to deal with this problem, by which the kernel matrix weights and Lagrange multipliers can be simultaneously derived through semidefinite programming. However, the amount of time and sp...

متن کامل

A Hybrid Machine Learning System for Stock Market Forecasting

In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Intelligence and Neuroscience

سال: 2012

ISSN: 1687-5265,1687-5273

DOI: 10.1155/2012/601296